Polymeric Materials for Solar Thermal Applications
2006 - 2014

Dr. Michael Köhl
Operating Agent
Fraunhofer ISE
Freiburg, Germany
michael.koehl@ise.fraunhofer.de

Dr. Michaela Meir
Subtask Leader B
University of Oslo
Oslo, Norway
mmeir@fys.uio.no

Dr. Stephan Fischer
Subtask Leader B
University of Stuttgart
Stuttgart, Germany
fischer@itw.uni-stuttgart.de

Prof. Dr. Gernot M. Wallner
Subtask Leader C
Johannes Kepler University
Linz, Austria
gernot.wallner@jku.at
Background: Solarthermal growth

20% Annual growth:
390 GW ~ 560 Mm² in 2020

How to provide the raw materials?
Energy consumption

Figure 1. World Marketed Energy Consumption, 2005-2030

Figure 8. World Carbon Dioxide Emissions, 2005-2030

Cost scenarios

Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Metal</th>
<th>Plastics</th>
<th>Savings</th>
<th>Savings %</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorber</td>
<td>38</td>
<td>22</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>transp cover</td>
<td>23</td>
<td>14</td>
<td>9</td>
<td>39%</td>
</tr>
<tr>
<td>casing</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>33%</td>
</tr>
<tr>
<td>sealing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>insulation</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>other</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Material total</td>
<td>76</td>
<td>49</td>
<td>27</td>
<td>36%</td>
</tr>
</tbody>
</table>

Labor

<table>
<thead>
<tr>
<th>Cost</th>
<th>Metal</th>
<th>Plastics</th>
<th>Savings</th>
<th>Savings %</th>
</tr>
</thead>
<tbody>
<tr>
<td>labor</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Total production</td>
<td>91</td>
<td>58</td>
<td>33</td>
<td>36%</td>
</tr>
<tr>
<td>overhead</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Panel cost</td>
<td>141</td>
<td>108</td>
<td>33</td>
<td>23%</td>
</tr>
</tbody>
</table>

Installation

<table>
<thead>
<tr>
<th>Cost</th>
<th>Metal</th>
<th>Plastics</th>
<th>Savings</th>
<th>Savings %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>30%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>241</td>
<td>178</td>
<td>63</td>
<td>26%</td>
</tr>
</tbody>
</table>
Objectives

- Assessment of the **applicability** and the **cost reduction potential** of polymeric materials for solar thermal systems
- Novel polymer based **designs**
- Evaluation of **less expensive materials**
- Assessment of **durability and reliability**
- Promote increased **confidence** in the use of these products
- Development and application of appropriate **testing and certification methods**
- Identification of **less expensive manufacturing** processes
Collector components

Assembly Process
- Absorber and thermal insulation inserted into collector trough
- Back plate bonded to collector trough

Material Selection (example)
- glazing of collector trough: transparent PA
- structure of collector trough: PA coloured
- back plate: PA coloured
Integrated storage collectors
Mass production

Design-Concept

Creation of suitable materials

Processing Development

Coating application
thermotropic polymeric materials allowing for
temperature control of a collector

thickness insensitive spectrally selective paints (TISS)
and glazing with self-cleaning properties

adhesion of functional polymeric materials to polymeric
substrates

ageing behaviour of functional polymeric layers and
glazing under service relevant loading and
environmental conditions
Building integration
Subtask division

SUBTASK A
• Information
• Dr. Michaela Meir
• Norway

SUBTASK B
• Collectors
• Dr. Stephan Fischer
• Germany

SUBTASK C
• Materials
• Prof. Dr. mont. Gernot Wallner
• Austria

OPERATING AGENT: Dr. Michael Köhl, FhG ISE, Germany
Subtask A:

State of the art: Polymeric materials in solar thermal applications

Taskforce on total cost accounting approach (incl. LCA)

Taskforce on standards, regulations and guidelines

Database of successful architectural integration

Dissemination of information
Subtask A:

Polymeric materials for solar thermal collectors –
Market overview and life cycle study

Dr. Michaela Meir
NORWAY
Subtask B:

Design of polymer-friendly systems
 pressure-less
 drain-back
 thermosiphon

Development of polymeric collectors
 building integrated
 overheating-control

Design of polymeric absorbers
Subtask B:
Requirements for polymeric based collectors and components, and examples for developed products

Dr. Stephan Fischer
GERMANY
Subtask C:

Tailor-made polymeric materials for collectors and heat storages

Prof. Dr. mont. Gernot M. Wallner
AUSTRIA
Subtask C:

Development of Multi-Functional Polymeric Materials
Processing and Evaluation of Components and Functional Coatings
Methods for Testing and Characterization of Polymeric Materials
Subtask A:

Polymeric materials for solar thermal collectors – Market overview and life cycle study

Dr. Michaela Meir
NORWAY